Utilizing Genetic Algorithms for Generating Critical Scenarios for Testing Autonomous Driving Functions

Florian Kluck, Daniel Sumann, Franz Wotawa

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

Finding critical scenarios is essential in testing autonomous driving and automated driving functions. Such scenarios describe a sequence of interactions between the autonomous vehicle or the vehicle equipped with automated driving functions and the environment, i.e., other cars, pedestrians, and the current road conditions, which challenge the system we want to test. In this paper, we present a search-based testing solution utilizing genetic algorithms for test generation coupled with a traffic simulator. As a fitness function, we rely on the amount of emergency braking required to prevent crashes. In addition, we compare two types of hyperparameter tuning. One type uses combinations of hyperparameters obtained from previous papers. The other is based on a design of experiment method. We show that the genetic algorithm using the design of experiments method for hyperparameter tuning outperforms the other implementation in terms of criticality (i.e., the time of emergency braking) and diversity. Furthermore, we show that both genetic algorithm implementations are superior to pure random testing in the application context of autonomous and automated driving.

Originalspracheenglisch
TitelProceedings - 6th IEEE International Conference on Artificial Intelligence Testing, AITest 2024
Herausgeber (Verlag)IEEE
Seiten73-80
Seitenumfang8
ISBN (elektronisch)9798350365054
DOIs
PublikationsstatusVeröffentlicht - 30 Sept. 2024
Veranstaltung6th IEEE International Conference on Artificial Intelligence Testing, AITest 2024 - Shanghai, China
Dauer: 15 Juli 202418 Juli 2024

Konferenz

Konferenz6th IEEE International Conference on Artificial Intelligence Testing, AITest 2024
Land/GebietChina
OrtShanghai
Zeitraum15/07/2418/07/24

ASJC Scopus subject areas

  • Artificial intelligence
  • Angewandte Informatik
  • Maschinelles Sehen und Mustererkennung
  • Sicherheit, Risiko, Zuverlässigkeit und Qualität

Fingerprint

Untersuchen Sie die Forschungsthemen von „Utilizing Genetic Algorithms for Generating Critical Scenarios for Testing Autonomous Driving Functions“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren