Using Combinatorial Testing for Prompt Engineering of LLMs in Medicine

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

Large Language Models (LLMs) like GPT-4o are of growing interest. Interfaces such as ChatGPT invite an ever-growing number of people to ask questions, including health advice, which brings in additional risks for harm. It is well known that tools based on LLMs tend to hallucinate or deliver different answers for the same or similar questions. In both cases, the outcome might be wrong or incomplete, possibly leading to safety issues. In this paper, we investigate the outcome of ChatGPT when we ask similar questions in the medical domain. In particular, we suggest using combinatorial testing to generate variants of questions aimed at identifying wrong or misleading answers. In detail, we discuss the general framework and its parts and present a proof-of-concept utilizing a medical query and ChatGPT.
Originalspracheenglisch
TitelProceedings of the 27th International Multiconference Information Society – IS 2024
KapitelK
Seiten930-935
Seitenumfang6
DOIs
PublikationsstatusVeröffentlicht - Okt. 2024
Veranstaltung27th International Multiconference Information Society – IS 2024 - Ljubljana, Slowenien
Dauer: 7 Okt. 202411 Okt. 2024

Konferenz

Konferenz27th International Multiconference Information Society – IS 2024
KurztitelIS 2024
Land/GebietSlowenien
OrtLjubljana
Zeitraum7/10/2411/10/24

ASJC Scopus subject areas

  • Artificial intelligence

Fields of Expertise

  • Information, Communication & Computing

Fingerprint

Untersuchen Sie die Forschungsthemen von „Using Combinatorial Testing for Prompt Engineering of LLMs in Medicine“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren