Prediction of Driver's Stress Affection in Simulated Autonomous Driving Scenarios

Valerio De Caro*, Herbert Danzinger, Claudio Gallicchio*, Clemens Konczol, Vincenzo Lomonaco*, Mina Marmpena, Sevasti Politi, Omar Veledar, Davide Bacciu*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

We investigate the task of predicting stress affection from physiological data of users experiencing simulations of autonomous driving. We approach this task on two levels of granularity, depending on whether the prediction is performed at the end of the simulation, or along the simulation. In the former, denoted as coarse-grained prediction, we employed Decision Trees. In the latter, denoted as fine-grained prediction, we employed Echo State Networks, a Recurrent Neural Network that allows efficient learning from temporal data and hence is suitable for pervasive environments. We conduct experiments on a private dataset of physiological data from people participating in multiple driving scenarios simulating different stress-inducing events. The results show that the proposed model is capable of detecting event-related stress reactions, proving the existence of a correlation between stress-inducing events and the physiological data.

Originalspracheenglisch
TitelICASSPW 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing Workshops, Proceedings
Herausgeber (Verlag)IEEE
ISBN (elektronisch)9798350302615
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung2023 IEEE International Conference on Acoustics, Speech and Signal Processing Workshops: ICASSPW 2023 - Rhodes Island, Griechenland
Dauer: 4 Juni 202310 Juni 2023

Konferenz

Konferenz2023 IEEE International Conference on Acoustics, Speech and Signal Processing Workshops
KurztitelICASSPW 2023
Land/GebietGriechenland
OrtRhodes Island
Zeitraum4/06/2310/06/23

ASJC Scopus subject areas

  • Angewandte Informatik
  • Akustik und Ultraschall
  • Computernetzwerke und -kommunikation
  • Information systems
  • Signalverarbeitung

Fingerprint

Untersuchen Sie die Forschungsthemen von „Prediction of Driver's Stress Affection in Simulated Autonomous Driving Scenarios“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren