Optimizing Resource Scheduling for Multi-Scenario Mixed Service Groups under Edge Cloud-Native Environments Using Simulation Learning

Wei Xiong, Xinying Wang*, Franz Wotawa, Qiaozhi Hua

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

The evolution of cloud and edge computing technologies has brought about resource management challenges. Traditional resource scheduling strategies fall short in dynamic cloud-edge environments, one of the challenges is identifying system state changes in multi-scenario edge cloud-native environments. The dynamic orchestration and deployment of container resources are crucial. To address this issue, we introduce a virtual environment, which generates interactions of multi-scenario mixed service groups. Furthermore, we proposed a multi-agent adversarial imitation learning approach, which is trained in the virtual environment. Experiments reveal that our approach, which is fully trained in the virtual mixed-service environment, results in no physical sampling costs and significantly outperforms traditional supervised approaches.

Originalspracheenglisch
Seiten (von - bis)1071-1081
Seitenumfang11
FachzeitschriftJournal of Internet Technology
Jahrgang25
Ausgabenummer7
DOIs
PublikationsstatusVeröffentlicht - Dez. 2024

ASJC Scopus subject areas

  • Software
  • Computernetzwerke und -kommunikation

Fingerprint

Untersuchen Sie die Forschungsthemen von „Optimizing Resource Scheduling for Multi-Scenario Mixed Service Groups under Edge Cloud-Native Environments Using Simulation Learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren