On the distribution of partial quotients of reduced fractions with fixed denominator

Christoph Aistleitner, Bence Borda, Manuel Hauke

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

In this paper, we study distributional properties of the sequence of partial quotients in the continued fraction expansion of fractions a/N, where N is fixed and a runs through the set of mod N residue classes which are coprime with N. Our methods cover statistics such as the sum of partial quotients, the maximal partial quotient, the empirical distribution of partial quotients, Dedekind sums, and much more. We prove a sharp concentration inequality for the sum of partial quotients, and sharp tail estimates for the maximal partial quotient and for Dedekind sums, all matching the tail behavior in the limit laws which are known under an extra averaging over the set of possible denominators N. We show that the distribution of partial quotients of reduced fractions with fixed denominator gives a very good fit to the Gauß–Kuzmin distribution. As corollaries we establish the existence of reduced fractions with a small sum of partial quotients resp. a small maximal partial quotient.

Originalspracheenglisch
Seiten (von - bis)1371-1408
Seitenumfang38
FachzeitschriftTransactions of the American Mathematical Society
Jahrgang377
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - Feb. 2024

ASJC Scopus subject areas

  • Allgemeine Mathematik
  • Angewandte Mathematik

Fingerprint

Untersuchen Sie die Forschungsthemen von „On the distribution of partial quotients of reduced fractions with fixed denominator“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren