Lacunary sequences in analysis, probability and number theory

Publikation: ArbeitspapierPreprint

Abstract

In this paper we present the theory of lacunary trigonometric sums and lacunary sums of dilated functions, from the origins of the subject up to recent developments. We describe the connections with mathematical topics such as equidistribution and discrepancy, metric number theory, normality, pseudorandomness, Diophantine equations, and the subsequence principle. In the final section of the paper we prove new results which provide necessary and sufficient conditions for the central limit theorem for subsequences, in the spirit of Nikishin's resonance theorem for convergence systems. More precisely, we characterize those sequences of random variables which allow to extract a subsequence satisfying a strong form of the central limit theorem.
Originalspracheenglisch
HerausgeberSociete Mathematique de France
BandPanoramas et Synthèses 62
DOIs
PublikationsstatusVeröffentlicht - 2024

Fields of Expertise

  • Information, Communication & Computing

Fingerprint

Untersuchen Sie die Forschungsthemen von „Lacunary sequences in analysis, probability and number theory“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren