Generating concrete test cases from vehicle data using models obtained from clustering

Nour Chetouane*, Franz Wotawa

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

For testing systems, we need concrete test cases for executing a system under test. Furthermore, such test cases must be relevant to the application domain and cover critical situations a system has to handle. Tests can be repetitive when used for verifying non-functional properties like robustness. This paper introduces an approach using model-based testing for generating test cases from data. The approach relies on models represented by a graph we obtain from data clustering where the clusters correspond to the nodes. We use graph traversal to generate abstract test cases and data sequences from corresponding clusters to deliver concrete tests. Besides outlining the basic foundations of the approach, we discuss results obtained using a well-known driving data set. This use case shows that we can reproduce a test sequence that is reasonably close to the actual behavior of the vehicle stored in the data set.

Originalspracheenglisch
TitelProceedings - 2023 IEEE 16th International Conference on Software Testing, Verification and Validation Workshops, ICSTW 2023
Herausgeber (Verlag)IEEE
Seiten70-77
Seitenumfang8
ISBN (elektronisch)9798350333350
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung16th IEEE International Conference on Software Testing, Verification and Validation Workshops: ICSTW 2023 - Dublin, Irland
Dauer: 16 Apr. 202320 Apr. 2023

Konferenz

Konferenz16th IEEE International Conference on Software Testing, Verification and Validation Workshops
KurztitelICSTW 2023
Land/GebietIrland
OrtDublin
Zeitraum16/04/2320/04/23

ASJC Scopus subject areas

  • Software
  • Sicherheit, Risiko, Zuverlässigkeit und Qualität
  • Modellierung und Simulation

Fingerprint

Untersuchen Sie die Forschungsthemen von „Generating concrete test cases from vehicle data using models obtained from clustering“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren