FaultLines - Evaluating the Efficacy of Open-Source Large Language Models for Fault Detection in Cyber-Physical Systems

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

Cyber-physical systems are integral to the infrastructure of global communication and transportation networks, which makes it crucial to detect faults, prevent cyber attacks, and ensure operational safety. Although machine learning techniques, including large language models (LLMs), have been explored for fault detection, the efficacy of open-source LLMs remains underexplored. In this work, we assess the capabilities of eight open-source LLMs in identifying faults in cyber-physical systems using a simulation dataset from monitoring an electrified vehicle's battery management system. By applying pretrained LLMs without fine-tuning and incorporating retrieval augmented generation (RAG) techniques alongside textual encoding methods, our study aims to explore the potential of open LLMs in fault detection. Our results show that open LLMs can effectively identify faults, with Mistral out-performing alternative models such as Mixtral, codellama, and Gemma in precision, recall, and Fl-score metrics. Furthermore, our results highlight the importance of textual encoding strategies in enhancing the fault detection capabilities of LLMs, which possess a degree of explanatory power with respect to the detected anomalies. This work demonstrates the feasibility of using open LLMs for fault detection in cyber-physical systems and opens avenues for future research to enhance fault detection and fault localization.

Originalspracheenglisch
TitelProceedings - 6th IEEE International Conference on Artificial Intelligence Testing, AITest 2024
Herausgeber (Verlag)IEEE
Seiten47-54
Seitenumfang8
ISBN (elektronisch)9798350365054
DOIs
PublikationsstatusVeröffentlicht - 25 Sept. 2024
Veranstaltung6th IEEE International Conference on Artificial Intelligence Testing, AITest 2024 - Shanghai, China
Dauer: 15 Juli 202418 Juli 2024

Publikationsreihe

NameProceedings - 6th IEEE International Conference on Artificial Intelligence Testing, AITest 2024

Konferenz

Konferenz6th IEEE International Conference on Artificial Intelligence Testing, AITest 2024
Land/GebietChina
OrtShanghai
Zeitraum15/07/2418/07/24

ASJC Scopus subject areas

  • Artificial intelligence
  • Angewandte Informatik
  • Maschinelles Sehen und Mustererkennung
  • Sicherheit, Risiko, Zuverlässigkeit und Qualität

Fingerprint

Untersuchen Sie die Forschungsthemen von „FaultLines - Evaluating the Efficacy of Open-Source Large Language Models for Fault Detection in Cyber-Physical Systems“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren