FLEX: Fault Localization and Explanation Using Open-Source Large Language Models in Powertrain Systems

Herbert Muehlburger*, Franz Wotawa*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

Cyber-physical systems (CPS) are critical to modern infrastructure, but are vulnerable to faults and anomalies that threaten their operational safety. In this work, we evaluate the use of open-source Large Language Models (LLMs), such as Mistral 7B, Llama3.1:8b-instruct-fp16, and others to detect anomalies in two distinct datasets: battery management and powertrain systems. Our methodology utilises retrieval-augmented generation (RAG) techniques, incorporating a novel two-step process where LLMs first infer operational rules from normal behavior before applying these rules for fault detection. During the experiments, we found that the original prompt design yielded strong results for the battery dataset but required modification for the powertrain dataset to improve performance. The adjusted prompt, which emphasises rule inference, significantly improved anomaly detection for the powertrain dataset. Experimental results show that models like Mistral 7B achieved F1-scores up to 0.99, while Llama3.1:8b-instruct-fp16 and Gemma 2 reached perfect F1-scores of 1.0 in complex scenarios. These findings demonstrate the impact of effective prompt design and rule inference in improving LLM-based fault detection for CPS, contributing to increased operational resilience.

Originalspracheenglisch
Titel35th International Conference on Principles of Diagnosis and Resilient Systems, DX 2024
Redakteure/-innenIngo Pill, Avraham Natan, Franz Wotawa
Herausgeber (Verlag)Schloss Dagstuhl - Leibniz-Zentrum für Informatik
ISBN (elektronisch)9783959773560
DOIs
PublikationsstatusVeröffentlicht - 26 Nov. 2024
Veranstaltung35th International Conference on Principles of Diagnosis and Resilient Systems, DX 2024 - Vienna, Österreich
Dauer: 4 Nov. 20247 Nov. 2024

Publikationsreihe

NameOpenAccess Series in Informatics
Band125
ISSN (Print)2190-6807

Konferenz

Konferenz35th International Conference on Principles of Diagnosis and Resilient Systems, DX 2024
Land/GebietÖsterreich
OrtVienna
Zeitraum4/11/247/11/24

ASJC Scopus subject areas

  • Geografie, Planung und Entwicklung
  • Modellierung und Simulation

Fingerprint

Untersuchen Sie die Forschungsthemen von „FLEX: Fault Localization and Explanation Using Open-Source Large Language Models in Powertrain Systems“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren