Effective Bayesian Causal Inference via Structural Marginalisation and Autoregressive Orders

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

Bayesian causal inference (BCI) naturally incorporates epistemic uncertainty about the true causal model into down-stream causal reasoning tasks by posterior averaging over causal models. However, this poses a tremendously hard computational problem due to the intractable number of causal structures to marginalise over. In this work, we decompose the structure learning problem into inferring (i) a causal order and (ii) a parent set for each variable given a causal order. By limiting the number of parents per variable, we can exactly marginalise over the parent sets in polynomial time, which leaves only the causal order to be marginalised. To this end, we propose a novel autoregressive model over causal orders (ARCO) learnable with gradient-based methods. Our method yields state-of-the-art in structure learning on simulated non-linear additive noise benchmarks with scale-free and Erdos-Renyi graph structures, and competitive results on real-world data. Moreover, we illustrate that our method accurately infers interventional distributions, which allows us to estimate posterior average causal effects and many other causal quantities of interest.
Originalspracheenglisch
TitelICML SPIGM Workshop
Seitenumfang26
PublikationsstatusVeröffentlicht - 2024
Veranstaltung2nd SPIGM - ICML 2024 Workshop on Structured Probabilistic Inference & Generative Modeling: ICML 2024 - Vienna, Österreich
Dauer: 26 Juli 202426 Juli 2024

Workshop

Workshop2nd SPIGM - ICML 2024 Workshop on Structured Probabilistic Inference & Generative Modeling
Land/GebietÖsterreich
OrtVienna
Zeitraum26/07/2426/07/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Effective Bayesian Causal Inference via Structural Marginalisation and Autoregressive Orders“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren