Data-Driven Diagnosis of Electrified Vehicles: Results from a Structured Literature Review

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

Traditional onboard vehicle diagnostics are rapidly evolving concomitant to the rise of electrified powertrains, digital transformation, and intelligent technologies for advanced system management. The big data now available in modern vehicles offers unprecedented opportunities for condition monitoring and prognosis, but also presents challenges in scaling and integrating multimodal sensor data across components with varying timescale dynamics. Machine learning techniques have proven particularly effective in implementing diagnostic functions within electrified vehicle powertrains. This study systematically reviews intelligent, data-driven techniques for health monitoring and prognosis of electrified powertrains. We categorize existing research based on diagnostic functions and machine learning methods, with a focus on approaches that do not require prior knowledge of faulty operational states. Our findings indicate that deep learning methods are state-of-the-art across several diagnostic functions, fault modes, system levels, and multimodal sensor integration.
Originalspracheenglisch
Titel35th International Conference on Principles of Diagnosis and Resilient Systems (DX 2024)
Redakteure/-innenIngo Pill, Avraham Natan, Franz Wotawa
Herausgeber (Verlag)Schloss Dagstuhl - Leibniz-Zentrum für Informatik
Seiten20:1-20:14
Seitenumfang14
ISBN (elektronisch)978-395977356-0
DOIs
PublikationsstatusVeröffentlicht - 26 Nov. 2024
VeranstaltungInternational Conference on Principles of Diagnosis and Resilient Systems, DX 2024 - Europahaus Wien Conference and Event Center, Vienna, Österreich
Dauer: 4 Nov. 20247 Nov. 2024
Konferenznummer: 35
https://conf.researchr.org/home/dx-2024

Publikationsreihe

NameOpenAccess Series in Informatics
Band125
ISSN (Print)2190-6807

Konferenz

KonferenzInternational Conference on Principles of Diagnosis and Resilient Systems, DX 2024
KurztitelDX'24
Land/GebietÖsterreich
OrtVienna
Zeitraum4/11/247/11/24
Internetadresse

ASJC Scopus subject areas

  • Artificial intelligence
  • Informatik (insg.)
  • Geografie, Planung und Entwicklung
  • Modellierung und Simulation

Fields of Expertise

  • Information, Communication & Computing

Treatment code (Nähere Zuordnung)

  • Basic - Fundamental (Grundlagenforschung)

Fingerprint

Untersuchen Sie die Forschungsthemen von „Data-Driven Diagnosis of Electrified Vehicles: Results from a Structured Literature Review“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren