TY - JOUR
T1 - Bacterial sialyltransferases and their use in biocatalytic cascades for sialo-oligosaccharide production
AU - Schelch, Sabine
AU - Zhong, Chao
AU - Petschacher, Barbara
AU - Nidetzky, Bernd
PY - 2020/11/15
Y1 - 2020/11/15
N2 - Sialic acids are important recognition sites in protein- and lipid-linked glycans of higher organisms and of select bacteria and protozoa. They are also prominent in human milk oligosaccharides. Defined sialo-oligosaccharides have interesting applications in chemical glycobiology and represent emerging ingredients for health-related nutrition. The growing demand for sialo-oligosaccharides has promoted developments in multidisciplinary carbohydrate synthesis, with approaches by cascade bio-catalysis having a leading role. The key synthetic step involves catalysis by sialyltransferases (EC 2.4.99.-) and consists in attaching sialic acid from a cytidine 5′-monophosphate-activated donor (CMP-sialic acid) to the nascent oligosaccharide acceptor. Sialyltransferases from bacteria, in general, show convenient properties for application (e.g., relative ease of recombinant production; high specific activity and operational stability). Here, we review salient characteristics of the bacterial sialyltransferases active on D-galactose- and N-acetyl-D-galactosamine-containing acceptors and highlight advances of their development into efficient biocatalysts. We also show integration of these sialyltransferases into multistep enzymatic cascades for sialo-oligosaccharide (e.g., sialyllactose) production from expedient substrates, using in situ formation of the CMP-sialic acid donor. We summarize functional parameters of the enzymes for CMP-sialic acid supply and analyze multi-enzymatic synthesis of sialo-oligosaccharides from a reaction engineering point of view. We discuss opportunities of sialyltransferase cascades for efficient sialo-oligosaccharide production in vitro and in vivo.
AB - Sialic acids are important recognition sites in protein- and lipid-linked glycans of higher organisms and of select bacteria and protozoa. They are also prominent in human milk oligosaccharides. Defined sialo-oligosaccharides have interesting applications in chemical glycobiology and represent emerging ingredients for health-related nutrition. The growing demand for sialo-oligosaccharides has promoted developments in multidisciplinary carbohydrate synthesis, with approaches by cascade bio-catalysis having a leading role. The key synthetic step involves catalysis by sialyltransferases (EC 2.4.99.-) and consists in attaching sialic acid from a cytidine 5′-monophosphate-activated donor (CMP-sialic acid) to the nascent oligosaccharide acceptor. Sialyltransferases from bacteria, in general, show convenient properties for application (e.g., relative ease of recombinant production; high specific activity and operational stability). Here, we review salient characteristics of the bacterial sialyltransferases active on D-galactose- and N-acetyl-D-galactosamine-containing acceptors and highlight advances of their development into efficient biocatalysts. We also show integration of these sialyltransferases into multistep enzymatic cascades for sialo-oligosaccharide (e.g., sialyllactose) production from expedient substrates, using in situ formation of the CMP-sialic acid donor. We summarize functional parameters of the enzymes for CMP-sialic acid supply and analyze multi-enzymatic synthesis of sialo-oligosaccharides from a reaction engineering point of view. We discuss opportunities of sialyltransferase cascades for efficient sialo-oligosaccharide production in vitro and in vivo.
KW - CMP-sialic acid regeneration
KW - Neuraminic acid
KW - One-pot multi-enzyme cascade
KW - Reaction engineering
KW - Sialic acid
KW - Sialo-oligosaccharide
KW - Sialyltransferase
UR - http://www.scopus.com/inward/record.url?scp=85090027849&partnerID=8YFLogxK
U2 - 10.1016/j.biotechadv.2020.107613
DO - 10.1016/j.biotechadv.2020.107613
M3 - Review article
C2 - 32822768
AN - SCOPUS:85090027849
SN - 0734-9750
VL - 44
JO - Biotechnology Advances
JF - Biotechnology Advances
M1 - 107613
ER -